Possible Timeline for STAR Spin Program | RHIC RUN | NEW EQUIPMENT TO | STAR/RHIC SPIN | |-------------|--|--| | <u>YEAR</u> | BE COMMISSIONED | <u>MEASUREMENTS</u> | | FY04 | New AGS warm snake; H gas
jet; rf spin flipper; BEMC
preshower; EEMC SMD +
preshower; completed FPD | Test \mathcal{L} improvement schemes; calibrate P_{beam} to 10%; continue A_{LL} (jets) | | FY05 | New strong AGS cold snake;
Completed BEMC, EEMC
(incl. postshower); forward
hadron calorim't'r? | Calibrate P_{beam} to 5%; improve \mathcal{L} ; Collins frag. with forward p^{0} 's; more A_{LL} (jets); first look at g^{+} jet | | FY06+07 | Whatever is needed to achieve full design £ and P _{beam} ; ö s = 500 GeV pol'd collisions; STAR TOF barrel | A _{LL} (g + jet), transversity
measurements at mid-
rapidity, at Ü s = 200 GeV | | FY08+09 | Improved STAR forward tracker (1<1-2) | $A_{LL}(g+jet), A_{L}(W^{\pm})$ at \ddot{o} s
= 500 GeV | S. Vigdor, Spin Physics from STAR 4th Circum-Pan-Pacific Symposium on High Energy Spin Physics, Seattle (8/2003) ## Inclusive jet production #### · A_{LL} sensitivity (incl. detector effects) - Simulation based on Pythia including trigger and and jet reconstruction efficiencies - Assume: Coverage of EMC (barrel) $\Rightarrow 0 < \Phi < 2\pi$ and 0 < 1 - Jet Trigger: $\not\in$ > 5 GeV over at least one "patch" $(\Delta \eta = 1) \times (\Delta \Phi = 1)$ - Jet reconstruction: Cone algorithm (seed = 1GeV, R = 0.7) - Luminosity: 3pb¹ - Polarization: 0.4 - $\sqrt{s} = 200$ GeV ## Recent report from the competition at CERN... ## Conclusion and outlook - •2002 run: 1.2 fb¹ long. + 0.3 fb¹ trans. - Phase 1 setup fully operational - Preliminary results for: - vector mesons, L polarization, transversity - Prospects for $\Delta G/G$ in 2004(based on 2002 stat): - ->d(DG/G)_{stat} ~ 0.15 for high p_T events $Q^2>1GeV^2$ (~ 0.05 for all Q^2) Claude MARCHAND DIS2003 St. Petersburg ## Gluon polarisation $\Delta \textit{G}/\textit{G}$ determined for a given fraction of nucleon momentum carried by gluons η | Selection | $\Delta G/G \pm \delta (\Delta G/G)_{stat}$ | <η> _{genPGF} | |--------------------------|---|-----------------------| | $\Sigma p_T^2 > 2.5$ GeV | -0.07 ± 0.40 | 0.09 | | NN >0.26 | -0.20±0.29 | 0.07 | #### K.Kowalik, SINSWarsaw (SMC) Determination of the gluon polarization. Xth Workshop on High Energy Spin Physics, Dubna (9/03) # p+p Integrated Luminosity for Run 3 Delivered to STAR IR Integrated luminosity from STAR BBC, selected on signal:background > 3 Delivered luminosity limited by 'beam-beam tune shifts' but should be adequate to accomplish physics goals from Run 3. BROOKHAVE NATIONAL LABORATORY ## RHIC Polarization at store for Run 3 - RHIC polarization improved by factor of ~2 compared to run 2 - Yellow ring affected by problem with snake magnet (failure of inner helical windings of Yellow ring magnet). ## STAR Spin Results: Forward Pion Asymmetry and Cross Section $$p_{\uparrow} + p \otimes "\pi^0" + X$$, $\sqrt{s} = 200 \text{ GeV}$ - Measured cross sections consistent with pQCD calculations. - Large spin effects observed for $\ddot{O}s = 200 \text{ GeV } pp$ collisions, qualitatively consistent with models extrapolating from FNAL E704 data at $\ddot{O}s = 20 \text{ GeV}$. - \bullet Still have large normalization uncertainty on measured A_N , to be reduced when P_{beam} calibration exp't is done. S. Vigdor, Spin Physics from STAR ## Towards Disentangling the Dynamics... • Partial reconstruction of the forward jet may be possible for run-3 data by exploiting the overlap of the STAR Forward π^0 Detector (FPD) and Forward Time Projection Chamber (FTPC). Full reconstruction of forward jet will likely require the addition of hadronic calorimetry to supplement FPD. \Rightarrow Do jets have large A_N ? Is the large A_N correlated with the Collins angle (azimuthal angle between π^0 and jet thrust axis?)